3.1.64 \(\int \frac {x^3}{\sqrt {a+c x^2} (d+e x+f x^2)} \, dx\) [64]

3.1.64.1 Optimal result
3.1.64.2 Mathematica [C] (verified)
3.1.64.3 Rubi [A] (verified)
3.1.64.4 Maple [B] (verified)
3.1.64.5 Fricas [F(-1)]
3.1.64.6 Sympy [F]
3.1.64.7 Maxima [F(-2)]
3.1.64.8 Giac [F(-2)]
3.1.64.9 Mupad [F(-1)]

3.1.64.1 Optimal result

Integrand size = 27, antiderivative size = 380 \[ \int \frac {x^3}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\frac {\sqrt {a+c x^2}}{c f}-\frac {e \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f^2}-\frac {\left (2 d e f-\left (e^2-d f\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {\left (2 d e f-\left (e^2-d f\right ) \left (e+\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}} \]

output
-e*arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))/f^2/c^(1/2)+(c*x^2+a)^(1/2)/c/f-1/2* 
arctanh(1/2*(2*a*f-c*x*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2* 
a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2))*(2*d*e*f-(-d*f+e^2)*(e-(- 
4*d*f+e^2)^(1/2)))/f^2*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e* 
(-4*d*f+e^2)^(1/2)))^(1/2)+1/2*arctanh(1/2*(2*a*f-c*x*(e+(-4*d*f+e^2)^(1/2 
)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^( 
1/2))*(2*d*e*f-(-d*f+e^2)*(e+(-4*d*f+e^2)^(1/2)))/f^2*2^(1/2)/(-4*d*f+e^2) 
^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)
 
3.1.64.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.36 (sec) , antiderivative size = 312, normalized size of antiderivative = 0.82 \[ \int \frac {x^3}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\frac {f \sqrt {a+c x^2}+\sqrt {c} e \log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )-c \text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {a e^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )-a d f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+2 \sqrt {c} d e \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-e^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2+d f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{a \sqrt {c} e+4 c d \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{c f^2} \]

input
Integrate[x^3/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 
output
(f*Sqrt[a + c*x^2] + Sqrt[c]*e*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]] - c*Roo 
tSum[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 
 + f*#1^4 & , (a*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] - a*d*f*Log[ 
-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] + 2*Sqrt[c]*d*e*Log[-(Sqrt[c]*x) + Sq 
rt[a + c*x^2] - #1]*#1 - e^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 
 + d*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d 
*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ])/(c*f^2)
 
3.1.64.3 Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 380, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {x \left (e^2-d f\right )+d e}{f^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )}-\frac {e}{f^2 \sqrt {a+c x^2}}+\frac {x}{f \sqrt {a+c x^2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (2 d e f-\left (e^2-d f\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\left (2 d e f-\left (e^2-d f\right ) \left (\sqrt {e^2-4 d f}+e\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {e \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f^2}+\frac {\sqrt {a+c x^2}}{c f}\)

input
Int[x^3/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 
output
Sqrt[a + c*x^2]/(c*f) - (e*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/(Sqrt[c]* 
f^2) - ((2*d*e*f - (e^2 - d*f)*(e - Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c 
*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqr 
t[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*f^2*Sqrt[e^2 - 4*d*f]*Sqrt[2* 
a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + ((2*d*e*f - (e^2 - d*f)* 
(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sq 
rt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2 
])])/(Sqrt[2]*f^2*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt 
[e^2 - 4*d*f])])
 

3.1.64.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.1.64.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(712\) vs. \(2(335)=670\).

Time = 0.78 (sec) , antiderivative size = 713, normalized size of antiderivative = 1.88

method result size
default \(\frac {\sqrt {c \,x^{2}+a}}{c f}-\frac {e \ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right )}{f^{2} \sqrt {c}}-\frac {\left (e^{3}-3 d e f +e^{2} \sqrt {-4 d f +e^{2}}-d f \sqrt {-4 d f +e^{2}}\right ) \sqrt {2}\, \ln \left (\frac {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{2 f^{3} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}-\frac {\left (-d f \sqrt {-4 d f +e^{2}}+e^{2} \sqrt {-4 d f +e^{2}}+3 d e f -e^{3}\right ) \sqrt {2}\, \ln \left (\frac {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{2 f^{3} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}\) \(713\)
risch \(\frac {\sqrt {c \,x^{2}+a}}{c f}-\frac {\frac {e \ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right )}{f \sqrt {c}}-\frac {\left (d f \sqrt {-4 d f +e^{2}}-e^{2} \sqrt {-4 d f +e^{2}}+3 d e f -e^{3}\right ) \sqrt {2}\, \ln \left (\frac {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{2 f^{2} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}-\frac {\left (e^{3}-3 d e f -e^{2} \sqrt {-4 d f +e^{2}}+d f \sqrt {-4 d f +e^{2}}\right ) \sqrt {2}\, \ln \left (\frac {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{2 f^{2} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}}{f}\) \(718\)

input
int(x^3/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
(c*x^2+a)^(1/2)/c/f-e/f^2*ln(x*c^(1/2)+(c*x^2+a)^(1/2))/c^(1/2)-1/2*(e^3-3 
*d*e*f+e^2*(-4*d*f+e^2)^(1/2)-d*f*(-4*d*f+e^2)^(1/2))/f^3/(-4*d*f+e^2)^(1/ 
2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(( 
((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2) 
)/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+ 
2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c- 
4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e 
^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1 
/2))/f))-1/2*(-d*f*(-4*d*f+e^2)^(1/2)+e^2*(-4*d*f+e^2)^(1/2)+3*d*e*f-e^3)/ 
f^3/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c 
*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c 
*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*(( 
-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/f*(-e+ 
(-4*d*f+e^2)^(1/2)))^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f 
+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2) 
)/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2))))
 
3.1.64.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x^3}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \]

input
integrate(x^3/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.1.64.6 Sympy [F]

\[ \int \frac {x^3}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {x^{3}}{\sqrt {a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \]

input
integrate(x**3/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)
 
output
Integral(x**3/(sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)
 
3.1.64.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^3}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^3/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` for 
 more deta
 
3.1.64.8 Giac [F(-2)]

Exception generated. \[ \int \frac {x^3}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: TypeError} \]

input
integrate(x^3/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 
3.1.64.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {x^3}{\sqrt {c\,x^2+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \]

input
int(x^3/((a + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)
 
output
int(x^3/((a + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)